Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma.
نویسندگان
چکیده
Interactions of CD70, a tumor necrosis factor-related cell surface ligand and its receptor, CD27, are thought to play an important role for T-, B-, and natural killer-cell activation. However, ligation of CD27 can also induce apoptosis. Human glioblastoma is paradigmatic for cancer-associated immunosuppression. We identified CD70 as a radioinducible gene in U87 MG glioma cells. A screening of a panel of human glioma cell lines revealed that 11 of 12 cell lines expressed CD70 mRNA and protein. Two human neuroblastoma cell lines did not express CD70. CD70 mRNA expression was enhanced by irradiation in 8 of 12 glioma cell lines in a p53-independent manner. No alteration in CD70 expression was observed after glioma cell exposure to cytotoxic drugs such as lomustine. CD70 protein was also detected by immunocytochemistry in 5 of 12 glioblastomas and 3 of 4 anaplastic astrocytomas in vivo. CD27 expression was not detected in any glioma cell line, and there was no evidence for autocrine or backward signaling of the CD70 system in human glioma cells. Unexpectedly, CD70 expressed on glioma cells did not increase the immunogenicity of glioma cells in vitro. In contrast, CD70-positive glioma cells induced apoptosis in peripheral blood mononuclear cells (PBMCs) in a CD70-dependent manner. Neutralization of CD70 expressed on glioma cells prevented apoptosis and enhanced the release of tumor necrosis factor-alpha in cocultures of glioma cells and PBMCs. The effects of CD70-expressing glioma cells on PBMCs were mimicked by agonistic CD27 antibodies. Conversely, the shedding of CD27 by PBMCs was identified as a possible escape mechanism from glioma cell-induced CD70-dependent apoptosis. Thus, induction of B-cell and T-cell apoptosis via interactions of CD70 expressed on glioma cells and CD27 expressed on B and T cells may be a novel way for the immune escape of malignant gliomas.
منابع مشابه
P38: The Immunoregulatory Effect of Cyclic Dinucleotides on Human Immune Cells
In multiple sclerosis (MS) beneficial effects have been assigned to the interferon (IFN)-I subclass IFN-ß, making its administration a first-line disease-modifying treatment in MS. IFN-I responses can be induced by cyclic-dinucleotide (CDN) triggered activation of Stimulator-of-interferon-genes (STING) and have essential immunomodulatory effects. A beneficial effect of STING activation on...
متن کاملTherapeutics, Targets, and Chemical Biology API5 Confers Tumoral Immune Escape through FGF2- Dependent Cell Survival Pathway
Abstract Identifying immune escape mechanisms used by tumors may define strategies to sensitize them to immunotherapies to which they are otherwise resistant. In this study, we show that the antiapoptotic gene API5 acts as an immune escape gene in tumors by rendering them resistant to apoptosis triggered by tumor antigen-specific T cells. Its RNAi-mediated silencing in tumor cells expressing hi...
متن کاملAPI5 confers tumoral immune escape through FGF2-dependent cell survival pathway.
Identifying immune escape mechanisms used by tumors may define strategies to sensitize them to immunotherapies to which they are otherwise resistant. In this study, we show that the antiapoptotic gene API5 acts as an immune escape gene in tumors by rendering them resistant to apoptosis triggered by tumor antigen-specific T cells. Its RNAi-mediated silencing in tumor cells expressing high levels...
متن کاملProducing Soluble Human Programmed Cell Death Protein-1: A Natural supporter for CD4+T cell Cytotoxicity and Tumor Cells Apoptosis
Background: Programmed cell death protein-1 (PD-1)/PD-L1 pathway is one of the immune checkpoint pathways involved in regulation of the immune responses and suppression of anti-tumor defense. PD-1/B7-H1-blocking antibodies improve immune responses such as cytotoxic activity of CD8+/CD4+T cells and also increase mortality of tumor cells; however their use is accompanied by adverse effects in pat...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 62 9 شماره
صفحات -
تاریخ انتشار 2002